earth can regulate its own temperature over millennia

A study by MIT researchers confirms that the planet harbors a ’stabilizing feedback’ mechanism that acts over hundreds of thousands of years to pull the climate back from the brink, keeping global temperatures within a steady, habitable range. Credits : Image: Christine Daniloff, MIT; NASA

Scientists have confirmed that a “stabilizing feedback” on 100,000-year timescales keeps global temperatures in check.

The Earth’s climate has undergone some big changes, from global volcanism to planet-cooling ice ages and dramatic shifts in solar radiation. And yet life, for the last 3.7 billion years, has kept on beating.

Now, a study by MIT researchers in Science Advances confirms that the planet harbors a “stabilizing feedback” mechanism that acts over hundreds of thousands of years to pull the climate back from the brink, keeping global temperatures within a steady, habitable range.

Just how does it accomplish this? A likely mechanism is “silicate weathering” – a geological process by which the slow and steady weathering of silicate rocks involves chemical reactions that ultimately draw carbon dioxide out of the atmosphere and into ocean sediments, trapping the gas in rocks.

Scientists have long suspected that silicate weathering plays a major role in regulating the Earth’s carbon cycle. The mechanism of silicate weathering could provide a geologically constant force in keeping carbon dioxide – and global temperatures – in check. But there’s never been direct evidence for the continual operation of such a feedback, until now.

The new findings are based on a study of paleoclimate data that record changes in average global temperatures over the last 66 million years. The MIT team applied a mathematical analysis to see whether the data revealed any patterns characteristic of stabilizing phenomena that reined in global temperatures on a  geologic timescale.

They found that indeed there appears to be a consistent pattern in which the Earth’s temperature swings are dampened over timescales of hundreds of thousands of years. The duration of this effect is similar to the timescales over which silicate weathering is predicted to act.

The results are the first to use actual data to confirm the existence of a stabilizing feedback, the mechanism of which is likely silicate weathering. This stabilizing feedback would explain how the Earth has remained habitable through dramatic climate events in the geologic past.

“On the one hand, it’s good because we know that today’s global warming will eventually be canceled out through this stabilizing feedback,” says Constantin Arnscheidt, a graduate student in MIT’s Department of Earth, Atmospheric and Planetary Sciences (EAPS). “But on the other hand, it will take hundreds of thousands of years to happen, so not fast enough to solve our present-day issues.”

The study is co-authored by Arnscheidt and Daniel Rothman, professor of geophysics at MIT.

Stability in data

Scientists have previously seen hints of a climate-stabilizing effect in the Earth’s carbon cycle: Chemical analyses of ancient rocks have shown that the flux of carbon in and out of Earth’s surface environment has remained relatively balanced, even through dramatic swings in global temperature. Furthermore, models of silicate weathering predict that the process should have some stabilizing effect on the global climate. And finally, the fact of the Earth’s enduring habitability points to some inherent, geologic check on extreme temperature swings.

“You have a planet whose climate was subjected to so many dramatic external changes. Why did life survive all this time? One argument is that we need some sort of stabilizing mechanism to keep temperatures suitable for life,” Arnscheidt says. “But it’s never been demonstrated from data that such a mechanism has consistently controlled Earth’s climate.”

Arnscheidt and Rothman sought to confirm whether a stabilizing feedback has indeed been at work, by looking at data of global temperature fluctuations through geologic history. They worked with a range of global temperature records compiled by other scientists, from the chemical composition of ancient marine fossils and shells, as well as preserved Antarctic ice cores.

“This whole study is only possible because there have been great advances in improving the resolution of these deep-sea temperature records,” Arnscheidt notes. “Now we have data going back 66 million years, with data points at most thousands of years apart.”

Speeding to a stop

To the data, the team applied the mathematical theory of stochastic differential equations, which is commonly used to reveal patterns in widely fluctuating datasets.

“We realized this theory makes predictions for what you would expect Earth’s temperature history to look like if there had been feedbacks acting on certain timescales,” Arnscheidt explains.

Using this approach, the team analyzed the history of average global temperatures over the last 66 million years, considering the entire period over different timescales, such as tens of thousands of years versus hundreds of thousands, to see whether any patterns of stabilizing feedback emerged within each timescale.

“To some extent, it’s like your car is speeding down the street, and when you put on the brakes, you slide for a long time before you stop,” Rothman says. “There’s a timescale over which frictional resistance, or a stabilizing feedback, kicks in, when the system returns to a steady state.”

Without stabilizing feedbacks, fluctuations of global temperature should grow with timescale. But the team’s analysis revealed a regime in which fluctuations did not grow, implying that a stabilizing mechanism reigned in the climate before fluctuations grew too extreme. The timescale for this stabilizing effect – hundreds of thousands of years – coincides with what scientists predict for silicate weathering.

Interestingly, Arnscheidt and Rothman found that on longer timescales, the data did not reveal any stabilizing feedbacks. That is, there doesn’t appear to be any recurring pull-back of global temperatures on timescales longer than a million years. Over these longer timescales, then, what has kept global temperatures in check?

“There’s an idea that chance may have played a major role in determining why, after more than 3 billion years, life still exists,” Rothman offers.

In other words, as the Earth’s temperatures fluctuate over longer stretches, these fluctuations may just happen to be small enough in the geologic sense, to be within a range that a stabilizing feedback, such as silicate weathering, could periodically keep the climate in check, and more to the point, within a habitable zone.

“There are two camps: Some say random chance is a good enough explanation, and others say there must be a stabilizing feedback,” Arnscheidt says. “We’re able to show, directly from data, that the answer is probably somewhere in between. In other words, there was some stabilization, but pure luck likely also played a role in keeping Earth continuously habitable.”

An experimental platform that puts moderation in the hands of its users shows that people do evaluate posts effectively and share their assessments with others.

MIT CSAIL researchers solve a differential equation behind the interaction of two neurons through synapses to unlock a new type of speedy and efficient AI algorithm.

Nonabah Lane, Navajo educator and environmental sustainability specialist with numerous ties to MIT, dies at 46

TECH NEWS RELATED

A nuclear-powered rocket could take astronauts to Mars in just 45 days

NASA’s manned mission to Mars would take seven months with the current technology we have for rockets. However, a nuclear-powered spacecraft could make that trek in just 45 days, according to news shared by the space agency. The design, which has been in the works in some fashion for ...

View more: A nuclear-powered rocket could take astronauts to Mars in just 45 days

Hubble’s stunning Butterfly Nebula image shows how our Sun will die

The sun will die, eventually. Like any star, the one at the center of our solar system is not meant to live forever. Eventually, it will use up all of the nuclear fuel in its core and explode, becoming a shell of what it once was. Now, Hubble’s various images ...

View more: Hubble’s stunning Butterfly Nebula image shows how our Sun will die

Hubble spotted a black hole snacking on the donut-shaped remains of a star

NASA’s Hubble space telescope spotted a black hole munching on the donut-shaped remains of a star in a galaxy nearly 300 million light-years away. The telescope was unable to capture any images of the donut-shaped remains, as the galaxy is too far away. But it was able to capture ...

View more: Hubble spotted a black hole snacking on the donut-shaped remains of a star

Scientists in Canada detected an 8 billion-year-old radio signal in a distant galaxy

Scientists have detected a record-breaking radio signal from atomic hydrogen in a very distant galaxy. The galaxy that the signal originated from is believed to have come from a galaxy at redshift z=1.29. Because of the galaxy’s immense distance, the emission line had shifted to a 48 cm line from ...

View more: Scientists in Canada detected an 8 billion-year-old radio signal in a distant galaxy

Green Bank Telescope captured the most detailed images of the Moon ever taken from Earth

Astronomers have taken the most detailed image of the Moon ever taken from Earth, and it was done with a device that uses less power than a household microwave oven. The Green Bank Telescope, which uses a low-power radar transmitter to capture data, along with the Very Long Baseline Array, ...

View more: Green Bank Telescope captured the most detailed images of the Moon ever taken from Earth

Polar Ignite 3 fitness watch review: Excellent battery, not great performance

While the likes of the Apple Watch may dominate the field in Apple-land, there’s still plenty of room for alternatives, regardless of smartphone platform. Many of these competitors, like Garmin and Polar, focus largely on health and fitness — and the latest of these is the new Polar Ignite 3. ...

View more: Polar Ignite 3 fitness watch review: Excellent battery, not great performance

Scientists think Jupiter’s moon Io may be home to alien life

The volcanic moon, which orbits the gas giant Jupiter, has long been written off as a possible home for alien life, as its extreme temperature and lava-covered surface make it wholly inhabitable. But, now scientists say that the volcanic moon could house life deep underground, perhaps even in the lava ...

View more: Scientists think Jupiter’s moon Io may be home to alien life

Nreal Air smart glasses review: A lightweight augmented reality experience

Mixed reality products are well and truly on the way. While the likes of the Meta Quest Pro perhaps isn’t the best bang for your buck, the Quest 2 is still a great product that makes virtual reality a whole lot more fun. But Meta isn’t the only player around ...

View more: Nreal Air smart glasses review: A lightweight augmented reality experience

Physicists have used entanglement to ‘stretch’ the uncertainty principle, improving quantum measurements

NASA already unveiled a successor to James Webb that will search for life on alien planets

Astronomers reveal the most detailed radio image yet of the Milky Way’s galactic plane

Revolutionary SBSP tech will try to beam solar power to Earth from space

Why does Nepal’s aviation industry have safety issues? An expert explains

Study claims the Milky Way is missing almost half of its regular matter

On a tiny Australian island, snakes feasting on seabirds evolved huge jaws in a surprisingly short time

They say we know more about the Moon than about the deep sea. They’re wrong

Astronomers found a rare star that was eclipsed for 7 years

A nearby galaxy merger may be hiding dual black holes that are 750 light-years apart

NASA’s Lunar Flashlight probe hits trouble on journey to the moon

AI is being used to figure out animal languages, forget Midjourney

OTHER TECH NEWS

Top Car News Car News