process converts polyethylene bags, plastics to polymer building blocks
UC Berkeley chemists have developed a new process, called isomerizing ethenolysis, to degrade polyethylene plastics, such as the milk bottle shown in the background, to propylene — the building block for another plastic, polypropylene. In the graphic, polyethylene chains (long web-like strands represented at the molecular level by the ball-and-stick figures) are first split by a metal catalyst (green balls) in the presence of ethylene (upper left) in a reaction known as “olefin metathesis.” A molecule of propene is released as the result of this process. The shorter polymer chain which results (right) has a carbon-carbon double bond at the end. A different catalyst (blue ball) initiates a round of “olefin isomerization,” where the double bond on the end of the polymer chain is shifted inward by one carbon atom. The isomerized polymer chain is then ready to undergo more cycles of metathesis and isomerization until all of it has been transformed into propylene. Credit: Brandon Bloomer, UC Berkeley

Polyethylene plastics—in particular, the ubiquitous plastic bag that blights the landscape—are notoriously hard to recycle. They’re sturdy and difficult to break down, and if they’re recycled at all, they’re melted into a polymer stew useful mostly for decking and other low-value products.

But a new process developed at the University of California, Berkeley, and Lawrence Berkeley National Laboratory (Berkeley Lab) could change all that. The process uses catalysts to break the long polyethylene (PE) polymers into uniform chunks—the three-carbon molecule propylene—that are the feedstocks for making other types of high-value plastic, such as polypropylene.

The process, admittedly in the early stages of development, would turn a waste product—not only plastic bags and packaging, but all types of PE plastic bottles—into a major product in high demand. Previous methods to break the chains of polyethylene required high temperatures and gave mixtures of components in much lower demand. The new process could not only lower the need for fossil fuel production of propylene, often called propene, but also help fill a currently unmet need by the plastics industry for more propylene.

“To the extent they get recycled, a lot of polyethylene plastics get turned into low-grade materials. You can’t take a plastic bag and then make another plastic bag with the same properties out of it,” said John Hartwig, UC Berkeley’s Henry Rapoport Chair in Organic Chemistry. “But if you can take that polymer bag back to its monomers, break it down into small pieces and repolymerize it, then instead of pulling more carbon out of the ground, you use that as your carbon source to make other things—for example, polypropylene. We would use less shale gas for that purpose, or for the other uses of propene, and to fill the so-called propylene gap.”

Polyethylene plastics make up about one-third of the entire plastics market worldwide, with more than 100 million tons produced yearly from fossil fuels, including natural gas obtained by hydraulic fracturing, often called shale gas.

Despite recycling programs—recyclable PE products are designated with plastic numbers 2 and 4—only about 14% of all polyethylene plastic products are recycled. Because of their stability, polyethylene polymers are difficult to break down into their component parts, or depolymerize, so most of the recycling involves melting it and molding it into other products, like yard furniture, or burning it as fuel.

Depolymerizing polyethylene and turning into proplylene is a way of upcycling—that is, producing higher-value products from essentially zero-value waste, while reducing the use of fossil fuels.

Hartwig and his colleagues will publish the details of their new catalytic process this week in the journal Science.

Two types of catalysts

Hartwig specializes in using metal catalysts to insert unusual and reactive bonds into hydrocarbon chains, most of which are petroleum based. Novel chemical groups can then be added at these reactive bonds to form new materials. The hydrocarbon polyethylene, which typically occurs as a polymer chain of perhaps 1,000 ethylene molecules—each ethylene is composed of two carbon and four hydrogen atoms—provided his team with a challenge because of its general non-reactivity.

With a grant from the U.S. Department of Energy to investigate new catalytic reactions, Hartwig and graduate students Steven Hanna and Richard J. “RJ” Conk came up with the idea of breaking two carbon-hydrogen bonds on polyethylene with a catalyst—initially, an iridium catalyst and, later, with platinum-tin and platinum-zinc catalysts—to create a reactive carbon-carbon double bond, which would serve as an Achilles’ heel. With this chink in the armor of the polymer’s carbon-hydrogen bonds, they could then unravel the polymer chain by reaction with ethylene and two additional catalysts that react cooperatively.

“We take a saturated hydrocarbon—all carbon-carbon single bonds—and remove a few molecules of hydrogen from the polymer to make carbon-carbon double bonds, which are more reactive than carbon-carbon single bonds. A few people had looked at that process, but nobody had achieved it on a true polymer,” Hartwig said. “Once you’ve got that carbon-carbon double bond, then you use a reaction called olefin metathesis, which was the subject of a Nobel Prize in 2005, with ethylene to cleave at the carbon-carbon double bond. Now, you’ve taken this long-chain polymer, and you’ve broken it into smaller pieces that contain a carbon-carbon double bond at the end.”

Addition of a second catalyst, made of palladium, enabled propylene molecules (three-carbon molecules) to be repeatedly clipped off the reactive end. The result: 80% of the polyethylene was reduced to propylene.

“Once we have a long chain with a carbon-carbon double bond at the end, our catalyst takes that carbon-carbon double bond and isomerizes it, one carbon in. Ethylene reacts with that initial isomerized product to make propylene and a nearly identical, just shorter, polymer with a double bond at the end. And then it does the same thing again and again. It walks one step in, cleaves; walks in, cleaves; walks in and cleaves until the whole polymer is cut into three-carbon pieces. From one end of the chain, it just chews down on the chain and spits off propylenes until there is no chain left.”

The reactions were conducted in a liquid solution with soluble, or “homogeneous,” catalysts. The researchers are currently working on a process using non-soluble, or “heterogeneous,” catalysts to achieve the same result, since solid catalysts can be reused more easily.

The group demonstrated that the process works with a variety of PE plastics, including translucent milk bottles, opaque shampoo bottles, PE packaging and the hard black plastic tops that link aluminum can four-packs. All were efficiently reduced to propylene, with only coloring agents having to be removed.

Hartwig’s lab also recently used innovative catalysis to create a process that turns polyethylene bags into adhesives, another valuable product. Together, these new processes could make a dent in the proliferating piles of plastic that end up in landfills, rivers and, ultimately, the oceans.

“Both are far from commercialization,” he said. “But it is easy to see how this new process would convert the largest amount of plastic waste to a huge chemical feedstock—with much further development, of course.”

Other co-authors of the paper are Jake Shi, Nicodemo Ciccia, Liang Qi, Brandon Bloomer, Steffen Heuvel, Tyler Wills and chemical and biomolecular engineering professor Alexis Bell of UC Berkeley and Ji Yang and research scientist Ji Su of Berkeley Lab. More information: Richard J. Conk et al, Catalytic deconstruction of waste polyethylene with ethylene to form propylene, Science (2022). DOI: 10.1126/science.add1088. www.science.org/doi/10.1126/science.add1088 Journal information: Science

Provided by University of California – Berkeley Citation: Process converts polyethylene bags, plastics to polymer building blocks (2022, September 29) retrieved 29 September 2022 from https://phys.org/news/2022-09-polyethylene-bags-plastics-polymer-blocks.html This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

TECH NEWS RELATED

Tech Mahindra launches Cloud BlazeTech

ETtechIT major Tech Mahindra on Wednesday announced the launch of Cloud BlazeTech, an integrated, sector-agnostic platform, to maximise business value for cloud-powered enterprises globally. The organisation will continue to invest in cloud services and hyerpscaler relationships to boost digital transformation for enterprises, it said.Integrated cloud migration, cloud-native operation and self-healing ...

View more: Tech Mahindra launches Cloud BlazeTech

Tech war: China’s embattled semiconductor sector sees first signs of relief from US sanctions

China’s embattled semiconductor industry is seeing some signs of relief from US export restrictions, a development that may temper further escalation of the tech war between the world’s two largest economies, even as Washington maintains its overall intent to curb Beijing’s chip ambitions. The US Commerce Department’s Bureau of ...

View more: Tech war: China’s embattled semiconductor sector sees first signs of relief from US sanctions

Indian Startup Byju's To Restructure $1.2 Billion Loan Amidst Steep Losses

One of the most valuable Indian startups, Byju’s, plans to restructure its $1.2 billion loan while dealing with cost reduction targets. According to Bloomberg, the online education firm Byju’s is attempting to renegotiate its $1.2 billion debt as it struggles with doubling losses and cost-cutting goals. The company has reportedly hired ...

View more: Indian Startup Byju's To Restructure $1.2 Billion Loan Amidst Steep Losses

China's Chip Imports Decline as Tech War With US Continues

China has seen a dramatic drop in its imports of semiconductors this year in the 11 months ending Nov. 30. As reported by South China Morning Post (SCMP), the factors that weigh down the world’s largest market for sophisticated chips include production slowdowns, economic hurdles, and a wide-ranging tech war with the ...

View more: China's Chip Imports Decline as Tech War With US Continues

Microbiome composition found to influence depression

Beta-diversity is linked with ethnic differences in depressive symptom scores. A Beta-diversity predicting PHQ9 depression. It presents results of linear regression analyses that model β-diversity as a predictor of depressive symptom levels. Panel (A) horizontal bars present ΔR2 after progressive adjustments for confounders (models 1a to 3), and respectively without ...

View more: Microbiome composition found to influence depression

New VIVO X90 Pro Plus already available from TradingShenzhen

There are flagship models and then there are THE flagship models of phones. And the new Vivo X90 series is certainly in the latter category. Especially the Vivo X90 Pro Plus is turning quite some heads with god tier specs and uncompromising performance. Getting your hands on a new Vivo ...

View more: New VIVO X90 Pro Plus already available from TradingShenzhen

Wooden ship from 1800s uncovered on Florida beach after erosion caused by recent hurricanes

DAYTONA BEACH SHORES, Fla. — Severe beach erosion from two late-season hurricanes has helped uncover what appears to be a wooden ship dating from the 1800s which had been buried under the sand on Florida’s East Coast for up to two centuries, impervious to cars that drove daily on the beach ...

View more: Wooden ship from 1800s uncovered on Florida beach after erosion caused by recent hurricanes

Biomembrane research findings could advance understanding of computing and human memory

A pure lipid membrane formed using lipid-coated water droplets exhibits long-term potentiation, or LTP, associated with learning and memory, emulating hippocampal LTP observed in the brains of mammals and birds. Credit: Jill Hemman/ORNL, U.S. Dept. of Energy While studying how bio-inspired materials might inform the design of next-generation computers, ...

View more: Biomembrane research findings could advance understanding of computing and human memory

A transformable robot with an omnidirectional wheel-leg

Synthesis of material that absorbs electromagnetic waves in the 6G band

25-nm iPMA Hexa-MTJ technology for scalable eFlash type STT-MRAM

Tecno Phantom X2 series launched with MediaTek Dimensity 9000 SoC, 120Hz AMOLED Display; check details

Fifty years later, remastered images reveal Apollo 17 in stunning clarity

4 Best Carbon Monoxide Detector With Displays

New Genes Linked to Multiple Sclerosis Discovered

Anti-Tumor Effects Without Toxicities: Researchers Use a Spice To Treat Cancer

Acebeam P16: Tail-dual Switch Tactical Flashlight

New Handy Google Chrome Shortcuts That You Should Know About!

What psychedelics can’t explain - Big Think

Take Control of Cloud Costs and Maximise Cloud Benefits: Aptum Cloud Impact Study

OTHER TECH NEWS

Top Car News Car News