researchers develop a two-photon microscope that provides unprecedented brain-imaging ability
Spencer Smith in the lab with the groundbreaking Diesel2p microscope. Credit: College of Engineering

Advancing our understanding of the human brain will require new insights into how neural circuitry works in mammals, including laboratory mice. These investigations require monitoring brain activity with a microscope that provides resolution high enough to see individual neurons and their neighbors.

Two-photon fluorescence microscopy has significantly enhanced researchers’ ability to do just that, and the lab of Spencer LaVere Smith, an associate professor in the Department of Electrical and Computer Engineering at UC Santa Barbara, is a hotbed of research for advancing the technology. As principal investigator on the five-year, $9 million NSF-funded Next Generation Multiphoton Neuroimaging Consortium (Nemonic) hub, which was born of President Obama’s BRAIN Initiative and is headquartered at UCSB, Smith is working to “push the frontiers of multi-photon microscopy for neuroscience research.”

In the Nov. 17 issue of Nature Communications, Smith and his co-authors report the development of a new microscope they describe as “Dual Independent Enhanced Scan Engines for Large Field-of-view Two-Photon imaging (Diesel2p).” Their two-photon microscope provides unprecedented brain-imaging ability. The device has the largest field of view (up to 25 square millimeters) of any such instrument, allowing it to provide subcellular resolution of multiple areas of the brain. 

“We’re optimizing for three things: resolution to see individual neurons, a field of view to capture multiple brain regions simultaneously, and imaging speed to capture changes in neuron activity during behavior,” Smith explained. “The events that we’re interested in imaging last less than a second, so we don’t have time to move the microscope; we have to get everything in one shot, while still making sure that the optics can focus ultrafast pulses of laser light.”

The powerful lasers that drive two-photon imaging systems, each costing about $250,000, deliver ultrafast, ultra-intense pulses of light, each of which is more than a billion times brighter than sunlight, and lasts 0.0001 nanosecond. A single beam, with 80 million pulses per second, is split into two wholly independent scan engine arms, enabling the microscope to scan two regions simultaneously, with each configured to different imaging parameters.

In previous iterations of the instrument, the two lasers were yoked and configured to the same parameters, an arrangement that strongly constrains sampling. Optimal scan parameters, such as frame rate and scan region size, vary across distributed neural circuitry and experimental requirements, and the new instrument allows for different scan parameters to be used for both beams. The new device, which incorporates several custom-designed and custom-manufactured elements, including the optical relays, the scan lens, the tube lens and the objective lens, is already being broadly adopted for its ability to provide high-speed imaging of neural activity in widely scattered brain regions.

Smith is committed to ensuring open access to the instrument. Long before this new paper was published, he and his co-authors released a preprint that included the engineering details needed to replicate it. They also shared the technology with colleagues at Boston University, where researchers in Jerry Chen’s lab have already made modifications to suit their own experiments.

“This is exciting,” Smith said. “They didn’t have to start from scratch like we did. They could build off of our work. Jerry’s paper was published back-to-back with ours, and two companies, INSS and CoSys, have sold systems based on our designs. Since there is no patent, and won’t be, this technology is free for all to use and modify however they see fit.”

Two-photon microscopy is a specialized type of fluorescent microscopy. To perform such work in Smith’s lab, researchers genetically engineer mice so that their neurons contain a fluorescent indicator of neuron activity. The indicator was made by combining a fluorescent protein from jellyfish and a calcium-binding protein that exists in nature. The approach leverages the brief, orders-of-magnitude increase in calcium that a neuron experiences when firing. When the laser is pointed at the neuron, and the neuron is firing, calcium comes in, the protein finds the calcium and, ultimately, fluoresces.

Two-photon imaging enhances fluorescence microscopy by employing the quantum behavior of photons in a way that prevents a considerable amount of out-of-focus fluorescence light from being generated. In normal optical microscopy, the light from the source used to excite the sample enters it in a way that produces a vertical cone of light that narrows down to the target focus area, and then an inverted cone below that point. Any light that is not at the narrowest point is out of focus.

The light in a two-photon microscope behaves differently, creating a single point of light (and no cones of light) that is in sharp focus, eliminating all out-of-focus light from reaching the imaging lens. “The image reveals only light from that plane we’re looking at, without much background signal from above or below the plane,” Smith explained. “The brain has optical properties and a texture like butter; it’s full of lipids and aqueous solutions that make it hard to see through. With normal optical imaging, you can see only the very top of the brain. Two-photon imaging allows us to image deeper down and still attain sub-cellular resolution.”

Another advantage of two-photon excitation light is that it uses lower-energy, longer-wavelength light (in the near-infrared range). Such light scatters less when passing through tissue, so it can be sharply focused deeper into tissue. Moreover, the lower-energy light is less damaging to the sample than shorter wavelengths, such as ultraviolet light.

Smith’s lab tested the device in experiments on mice, observing their brains while they performed tasks such as watching videos or navigating virtual reality environments. Each mouse has received a glass implant in its skull, providing a literal window for the microscope into its brain.

“I’m motivated by trying to understand the computational principles in neural circuitry that let us do interesting things that we can’t currently replicate in machines,” he said. “We can build a machine to do a lot of things better than we can. But for other things, we can’t. We train teenagers to drive cars, but self-driving cars fail in a wide array of situations where humans do not. The systems we use for deep learning are based on insights from the brain, but they are only a few insights, and not the whole story. They work pretty well, but are still fragile. By comparison, I can put a mouse in a room where it has never been, and it will run to someplace where I can’t reach it. It won’t run into any walls. It does this super reliably and runs on about a watt of power.

“There are interesting computational principles that we cannot yet replicate in human-made machines that exist in the brains of mice,” Smith continued, “and I want to start to uncover that. It’s why I wanted to build this microscope.” More information: Che-Hang Yu et al, Diesel2p mesoscope with dual independent scan engines for flexible capture of dynamics in distributed neural circuitry, Nature Communications (2021). DOI: 10.1038/s41467-021-26736-4 Journal information: Nature Communications

Provided by University of California – Santa Barbara Citation: Researchers develop a two-photon microscope that provides unprecedented brain-imaging ability (2021, December 2) retrieved 2 December 2021 from https://phys.org/news/2021-12-two-photon-microscope-unprecedented-brain-imaging-ability.html This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

TECH NEWS RELATED

Genetic Discovery Could Lead to Better Prediction of Suicide Risk Within Families

Summary: Study ties twenty genes into suicidal behaviors that span generations of families. Source: University of Utah Every 11 minutes, an American dies by suicide. That’s 132 people a day or more than 48,000 annually. For those left behind, the haunting question is why. One emerging factor is family history. ...

View more: Genetic Discovery Could Lead to Better Prediction of Suicide Risk Within Families

What Social Distancing Does to a Brain

Summary: Researchers report alterations in specific genes are associated with time in social isolation. Source: Max Planck Institute Have you recently wondered how social-distancing and self-isolation may be affecting your brain? An international research team led by Erin Schuman from the Max Planck Institute for Brain Research discovered a brain ...

View more: What Social Distancing Does to a Brain

New ‘Epigenetic’ Clock Provides Insight Into How the Human Brain Ages

Summary: Using brain tissue samples, researchers have identified a new epigenetic clock for brain aging. The study reveals how the epigenetic clock could provide insight into accelerated brain aging and neurodegenerative disorders. Source: University of Exeter While our circadian body clock dictates our preferred rhythm of sleep or wakefulness, a ...

View more: New ‘Epigenetic’ Clock Provides Insight Into How the Human Brain Ages

The DNA Regions in Our Brain That Contribute to Make Us Human

Summary: A new method identified a large set of gene regulatory regions in the brain, selected throughout human evolution. Source: Swiss Institute of Bioinformatics With only 1% difference, the human and chimpanzee protein-coding genomes are remarkably similar. Understanding the biological features that make us human is part of a fascinating ...

View more: The DNA Regions in Our Brain That Contribute to Make Us Human

Exposure to Metals Can Impact Pregnancy

Summary: Prenatal exposure to metals including lead, nickel, and cobalt, may disrupt the endocrine system. The disruptions may contribute to health and disease risks for the offspring later in life. Source: Rutgers University Exposure to metals such as nickel, arsenic, cobalt and lead may disrupt a woman’s hormones during pregnancy, ...

View more: Exposure to Metals Can Impact Pregnancy

Brain Tissue Yields Clues to Causes of PTSD

Summary: Gene expression patterns in four regions of the prefrontal cortex are distinctly different in those who have been diagnosed with PTSD compared to those who have not. Major differences were seen in interneurons, which inhibit the immune system and microglia in the central nervous system. Findings shed light on ...

View more: Brain Tissue Yields Clues to Causes of PTSD

Small Molecule Restores Muscle Strength and Boosts Endurance in Old Mice

Summary: A single protein called 15-PGDH appears to be a master regulator of muscle function during aging. Blocking the protein in mice increased muscle strength and endurance. Source: Stanford Blocking the activity of a single protein in old mice for one month restores mass and strength to the animals’ withered ...

View more: Small Molecule Restores Muscle Strength and Boosts Endurance in Old Mice

‘SCOUT’ Helps Researchers Find, Quantify Significant Differences Among Organoids

Summary: SCOUT is a newly developed pipeline for clearing, labeling, 3D imaging, and analyzing cerebral organoids. Source: Picower Institute for Learning and Memory The ability to culture cerebral organoids or “minibrains” using stem cells derived from people has given scientists experimentally manipulable models of human neurological development and disease, but ...

View more: ‘SCOUT’ Helps Researchers Find, Quantify Significant Differences Among Organoids

Mother’s Empathy Linked to ‘Epigenetic’ Changes to the Oxytocin Gene

Microbiota Linked to Dynamics of the Human Immune System

Molecular Mechanism of Long-Term Memory Discovered

Mothers’ Stress May Lead to Preterm Births, Faster Aging in Children

New Insights Into Fragile X Syndrome and the Fetal Brain

An Unexpected Role for the Brain’s Immune Cells

Clue to How to Protect Neurons and Encourage Their Growth Discovered

Gene Pathway Linked to Schizophrenia Identified Through Stem Cell Engineering

The Uncharted Molecular Language of the Brain

Large Transporter Protein Linked to Schizophrenia

Diversity and Severity of Autism Symptoms Linked to Mutation Locations

“Junk DNA” Plays a Key Role in Regulating Circadian Rhythms

OTHER TECH NEWS

;