Summary: Researchers reveal how the anterior cingulate cortex and motor cortex collaborate to update behaviors when adding a new step to an established task.

Source: MIT

Life is full of processes to learn and then relearn when they become more elaborate. One day you log in to an app with just a password, then the next day you also need a code texted to you. One day you can just pop your favorite microwavable lunch into the oven for six straight minutes, but then the packaging changes and you have to cook it for three minutes, stir, and then heat it for three more. Our brains need a way to keep up.

A new study by neuroscientists at The Picower Institute for Learning and Memory at MIT reveals some of the circuitry that helps a mammalian brain learn to add steps.

In Nature Communications the scientists report that when they changed the rules of a task, requiring rats to adjust from performing just one step to performing two, a pair of regions on the brain’s surface, or cortex, collaborated to update that understanding and change the rats’ behavior to fit the new regime.

The anterior cingulate cortex (ACC) appeared to recognize when the rats weren’t doing enough and updated cells in the motor cortex (M2) to adjust the task behavior.

“I started this project about 7 or 8 years ago when I wanted to study decision making,” says Daigo Takeuchi, a researcher at the University of Tokyo who led the work as a postdoc at the RIKEN-MIT Laboratory for Neural Circuit Genetics at The Picower Institute directed by senior author and Picower Professor Susumu Tonegawa.

“New studies were finding a role for M2. I wanted to study what upstream circuits were influencing this.”

Tripping up the second step

Takeuchi and Tonegawa traced neural circuit connections that led into M2 and found that many originated in the ACC. They began to see the ACC’s role in guiding M2’s sequential decisions when they instilled a genetic manipulation in ACC cells that allowed them to suppress their activity. This “chemogenetic” disabling of the ACC had a very specific effect.

When the task rules changed so that instead of having to poke their snout into just one hole to gain a little reward, rats had to poke their nose into a sequence of two holes, the rodents with silenced ACCs took much longer to realize the rule change.

Compared to rats with normal ACC activity, they failed for much longer to realize the second poke was necessary. Rats had no trouble, however, going from two steps back to just one, regardless of whether their ACC was silenced.

When the scientists chemogenetically silenced the ACC cells’ terminals in M2, they got the same results as silencing the ACC overall. They also silenced other areas of the cortex, but doing that didn’t affect the ability of the rats to notice and adjust to the rule switch.

Together these manipulations confirmed that it was specifically the ACC’s connections with M2 that help the rats notice and adjust to the one-step-to-two-step change.

But what effect does the ACC have in M2? Takeuchi and his co-authors measured the electrical activity of cells in M2 as the rats played their nose-poking, rule-changing game. They found that many cells were particularly activated by different task rules (i.e. one-step or two-steps). When they silenced the ACC, though, that suppressed this rule selectivity.

Within M2 Takeuchi and the team also noticed populations of neurons that responded preferentially to positive outcomes (reward for doing the task right) and negative outcomes (not getting a reward for doing the task wrong).

They found that when they silenced the ACC, this actually increased the activity of the negative-outcome encoding neurons during negative feedback, particularly for the first 10-20 rounds after the rules changed from one step to two. This correlated strongly with the timing, or “epoch,” of the rats’ worst performance.

“It seems likely the epoch-specific disruption of animals’ second-choice performance is associated with the excessive enhancement of the activity of negative outcome activated neurons caused by the ACC silencing,” they wrote in the study.

The team further confirmed that the feedback, or outcomes, stage mattered by using a different technique to silence the ACC. By engineering ACC neurons to be suppressed by flashes of light (a technique called “optogenetics”) they could precisely control when the ACC went offline.

They found that if they did so after the rats made an incorrect choice when the rules switched from one poke to two, they could cause the rats to continue to err. Optogenetic silencing of the ACC after rats made a correct choice didn’t undermine their subsequent behavior.

When a Task Adds More Steps, This Circuit Helps You Notice

In their study, researchers traced neurons projecting from the anterior cingulate cortex (right, red) to the motor cortex (left, green). Note the images are at different scales. Credit: Tonegawa Lab/MIT Picower Institute

“These results indicate that ACC neurons process error feedback information following an erroneous second response and use this information to adjust the animal’s sequential choice responses in subsequent trials,” they wrote.

Too high a threshold

The evidence painted a clear picture: When the rats needed to notice that an extra step was now required, the ACC’s job was to learn from negative feedback and signal M2 to take the second step. If the ACC wasn’t available when feedback was provided, then M2 cells that emphasize negative outcomes apparently would become especially active and the rats would fail to do the required second step for a time before finally catching on.

Why would less ACC activity somehow increase the negative outcome encoding cells’ activity in M2? Takeuchi hypothesizes that what the ACC is actually doing is stimulating inhibitory cells in M2 that normally modulate the activity of those cells. With ACC activity reduced, the negative outcome encoding M2 cells experience less inhibition.

The behavioral result, he theorizes, is that the rats therefore require more evidence than they should of the rule change. The mechanism isn’t completely clear, Takeuchi acknowledged, but the rats apparently need more time to experience outcome feedback from making the right decision of taking a second step before they’ll become convinced that they are on the right track doing so.

Takeuchi said that while the results demonstrate the circuit necessary for adapting to a rule change requiring more steps in a process, it also raises some interesting new questions. Is there another circuit for noticing when a multi-step process has become a one-step process? If so, is that circuit integrated with the one discussed in this study? And if the threshold model is the right one, how exactly is it working?

The implications not only matter for understanding the neural basis of natural sequential decisions but might also for AI applications ranging from game playing or industrial work, each of which can involve tasks with multiple steps.

About this neuroscience research news

Author: Press OfficeSource: MITContact: Press Office – MIT
Image: The image is credited to Tonegawa Lab/MIT Picower Institute

Original Research: Open access.
“Cingulate-motor circuits update rule representations for sequential choice decisions” by Daigo Takeuchi et al. Nature Communications


Abstract

Cingulate-motor circuits update rule representations for sequential choice decisions

Anterior cingulate cortex mediates the flexible updating of an animal’s choice responses upon rule changes in the environment. However, how anterior cingulate cortex entrains motor cortex to reorganize rule representations and generate required motor outputs remains unclear.

Here, we demonstrate that chemogenetic silencing of the terminal projections of cingulate cortical neurons in secondary motor cortex in the rat disrupts choice performance in trials immediately following rule switches, suggesting that these inputs are necessary to update rule representations for choice decisions stored in the motor cortex. Indeed, the silencing of cingulate cortex decreases rule selectivity of secondary motor cortical neurons.

Furthermore, optogenetic silencing of cingulate cortical neurons that is temporally targeted to error trials immediately after rule switches exacerbates errors in the following trials.

These results suggest that cingulate cortex monitors behavioral errors and updates rule representations in motor cortex, revealing a critical role for cingulate-motor circuits in adaptive choice behaviors.

TECH NEWS RELATED

Three papers highlight results of record 1.3 megajoule yield experiment

On the one-year anniversary of achieving a yield of more than 1.3 megajoules at LLNL’s National Ignition Facility, the scientific results of this record experiment have been published in three peer-reviewed papers: one in Physical Review Letters and two in Physical Review E. This stylized image shows a cryogenic target ...

View more: Three papers highlight results of record 1.3 megajoule yield experiment

Creating more environmentally friendly, heat resistant and transparent plastics

Graphical abstract. Credit: Journal of the American Chemical Society (2022). DOI: 10.1021/jacs.2c02569 Researchers in Japan have developed a new technique for creating polymers. This discovery is expected to lead to the development of plastics that are more environmentally friendly, heat resistant, and transparent. Previous research, such as that performed ...

View more: Creating more environmentally friendly, heat resistant and transparent plastics

AMD Ryzen PRO 5000 desktop series specs leak out, Ryzen 9 PRO 5945 features 12 cores

Lenovo ThinkStation P358 Tower features Ryzen PRO 5000 series The Ryzen PRO 5X45 desktop series are not to be mistaken with mobile PRO series. The former have not been officially introduced yet.  Lenovo confirmed as many as three different models, including 5945, 5845 and 5645, each offering a different configuration. ...

View more: AMD Ryzen PRO 5000 desktop series specs leak out, Ryzen 9 PRO 5945 features 12 cores

Micron 24 Gbps GDDR6X memory for GeForce RTX 40 series is now in production

Micron 24Gbps GDDR6X in production The memory manufacturer Micron, who had developed GDDR6X technology in collaboration with NVIDIA for RTX 30, is now preparing for the next-gen GPU series by offering even faster speeds. Company website has now been updated with new information on the new GDDR6X modules. It appears ...

View more: Micron 24 Gbps GDDR6X memory for GeForce RTX 40 series is now in production

UK tech can boost global reach with Israel trade deal, industry figures say

The UK tech industry can boost its global reach and encourage growth by striking new trade deals with Israel, according to leading figures in Israeli tech. Since the UK’s exit from the EU, trading relations with Europe have become more complex. The government has been seeking new trade deals ...

View more: UK tech can boost global reach with Israel trade deal, industry figures say

MSI confirms Ryzen 7000 CPUs and X670 motherboards are set to launch on September 15th

MSI X670 motherboards to launch mid-September Yesterday MSI revealed the design of its new X670 motherboards, today the company confirms when they launch.  MSI has now confirmed exactly when the Ryzen 7000 and X670 motherboards launch and that’s September 15th. This is the first confirmation of the Ryzen 7000 release ...

View more: MSI confirms Ryzen 7000 CPUs and X670 motherboards are set to launch on September 15th

Critical Research Under Way on Space Station Benefiting Humans on and off Earth

The International Space Station is pictured from the SpaceX Crew Dragon Endeavour during a fly around of the orbiting lab that took place following its undocking from the Harmony module’s space-facing port on November 8, 2021. Credit: NASA A busy week of critical research benefitting humans living on and ...

View more: Critical Research Under Way on Space Station Benefiting Humans on and off Earth

Hubble Captures Colorful Celestial Cloudscape in the Orion Nebula

Hubble Space Telescope captures the colorful region surrounding the Herbig-Haro object HH 505. Credit: ESA/Hubble & NASA, J. Bally, Acknowledgment: M. H. Özsaraç This vibrant celestial cloudscape from the NASA/ESA Hubble Space Telescope captures the colorful region surrounding the Herbig-Haro object HH 505. Luminous regions surrounding newborn stars, Herbig-Haro ...

View more: Hubble Captures Colorful Celestial Cloudscape in the Orion Nebula

Down on Vitamin D? It Could Be the Cause of Chronic Inflammation

France readies 'exceptional' rescue of beluga astray in Seine

Offspring of Centenarians Have Genetic Advantages

Jio 5G in India: Launch Date, Bands, Cities, Plans, SIM Card, Download Speed, and More

Lenovo Ideapad Slim 3 (2021) Review: A House Without a View

The world is awful. The world is much better. The world can be much better.

A Biochemist’s View of Life’s Origin Reframes Cancer and Aging

Podcast services startup Auddy raises £2.5m

Reversing Paralysis: “Dancing Molecules” Can Fix Spinal Cord Injuries

100 days of the Minerva mission

Most people hide minor purchases from partner, and that's a good thing, research finds

New perspective on tropical cyclone size-intensity relationship

OTHER TECH NEWS

Top Car News Car News